Biometrics — Forensic’s blog

INTRODUCTION

✴ The term “biometrics” is derived from the Greek words “bio” (life) and “metrics” (to measure).
✴ Biometrics is the technical term for body measurements and calculations.
✴ Biometrics is the measurement and statistical analysis of people’s unique physical and behavioral characteristics.
✴ Biometrics allows a person to be identified and authenticated based on a set of recognizable and verifiable data, which are unique and specific to them.
✴ Biometrics authentication is the process of comparing data for the person’s characteristics in order to determine resemblance.

CHARACTERISTCS

1. UNIVERSAL
2. UNIQUE
3. INVARIABLE
4. RECORDABLE
5. MEASURABLE

HISTORY OF BIOMETRICS

🔘1858 – First systematic capture of hand images for identification purposes is recorded.
🔘1870 – Bertillon develops anthropometries to identify individuals.
🔘1892 – Galton develops a classification system for fingerprints.
🔘1896 – Henry develops a fingerprint classification system
🔘1903 – NY State Prisons begin using fingerprints.
🔘1960s – Face recognition becomes semi-automated.
🔘1960 – First model of acoustic speech production is created.
🔘1963 – Hughes research paper on fingerprint automation is published.
🔘1974- First commercial hand geometry systems become available.
🔘1976 – First prototype system for speaker recognition is developed.
🔘1986 – Exchange of fingerprint minutiae data standard is published.
🔘1988 – First semi-automated facial recognition system is deployed.
🔘1991 – Face detection is pioneered, making real time face recognition possible.
🔘1992 – Biometric Consortium is established within US Government.
🔘1994 – Palm System is benchmarked.
🔘1996 – Hand geometry is implemented at the Olympic Games.
🔘1996 – NIST begins hosting annual speaker recognition evaluations.
🔘1997 – First commercial, generic biometric interoperability standard is published.
🔘1998- FBI launches COOlS (DNA forensic database).
🔘1999 – FBI’s IAFIS major components become operational.
🔘2001 – Face recognition is used at the Super Bowl in Tampa, Florida.
🔘2002 – ISO/IEC standards committee on biometrics is established.
🔘2004 – First statewide automated palm print databases are deployed in the US.
🔘2008 – U.S. Government begin coordinating biometric database use.
🔘2010 – U.S. national security apparatus utilizes biometrics for terrorist identification.
🔘2011 – Biometric identification used to identify body of Osama bin Laden.

TYPES OF BIOMETRICS

Biometrics Can Be Divided Into Three Main Categories Of Characteristics:
1. BIOLOGICAL
2. MORPHOLOGICAL
3. BEHAVIORAL

⏩DNA MATCHING

The identification of an individual using the analysis of segments from DNA.

👂EAR

The identification of an individual using the shape of the ear.

👀EYES – IRIS RECOGNITION & RETINA RECOGNITION

👁IRIS RECOGNITION- The use of the features found in the iris to identify an individual.
👁RETINA RECOGNITION- The use of patterns of veins in the back of the eye to accomplish recognition.

👱‍♂️FACE RECOGNITION

The analysis of facial features or patterns for the authentication or recognition of an individuals identity.

🤘FINGERPRINT RECOGNITION

The use of the ridges and valleys (minutiae) found on the surface tips of a human finger to identify an individual.

👋FINGER GEOMETRY RECOGNITION

The use of 3D geometry of the finger to determine identity.

🤚HAND GEOMETRY RECOGNITION

The use of the geometric features of the hand such as the lengths of fingers and the width of the hand to identify an individual.

🙌VEIN RECOGNITION

Vein recognition is a type of biometrics that can be used to identify individuals based on the vein patterns in the human finger or palm.

👃ODOUR

The use of an individuals odour to determine identity.

✍SIGNATURE RECOGNITION

The authentication of an individual by the analysis of handwriting style, specifically the signature. Technology is available to check two scanned signatures using advances algorithms.

👩‍💻TYPING RECOGNITION

The use of the unique characteristics of a persons typing for establishing identity.

🗣VOICE / SPEAKER RECOGNITION

There are two major applications of speaker recognition:
🙊Voice – Speaker Verification / Authentication
🙊Voice – Speaker Identification
✔In forensic applications, it is common to first perform a speaker identification process to create a list of “best matches” and then perform a series of verification processes to determine a conclusive match.
✔Voice recognition analyzes audio input for specific patterns in speech or sound. Each voice, or common noise, has a recognizable wavelength pattern that can aid in identification of a specific individual.

🚶‍♀️👣GAIT

The use of an individuals walking style or gait to determine identity.

Biometrics allows a person to be identified and authenticated based on a set of recognizable and verifiable data, which are unique and specific to them. This video covers following Points of Biometrics: 💡Introduction 💡Characteristics 💡History & 💡Types.

via Biometrics — Forensic’s blog

Advertisements

Police cloned a Michigan murder victim’s fingerprint that unlocked his phone — Quartz

Cracking crime just got a lot more innovative.

Police and biometrics researchers at Michigan State University have successfully unlocked the smartphone of a murder victim by using a digitally enhanced print-out of his fingerprint.

Officers from the digital forensics and cyber-crime unit at MSU’s police department approached the college’s biometrics research lab last month, having become aware of the team’s research (pdf) on how printed fingerprints can spoof mobile-phone sensors.

Police had the fingerprints of the murder victim from a previous arrest, which they gave to the lab to 3D print in a bid to unlock the device—a Samsung Galaxy S6.

Unsure which finger was paired to the phone, the lab printed 2D and 3D replicas of all 10 of the slain man’s fingerprints. None of them unlocked the device, so the team then digitally enhanced the quality of prints by filling in the broken ridges and valleys. Rather than opting for a more expensive 3D model, they printed new 2D versions using a special conductive ink that would create an electrical circuit needed to spoof the phone sensor.

After multiple attempts—thanks to the device not requiring a passcode after a certain number of efforts—the team successfully unlocked the phone with one of the digitally enhanced 2D prints.

An MSU spokesperson told Quartz there were plans to print 3D models to test on other devices—there was no need to do so for the victim’s phone, as the 2D print was successful.

Professor Anil Jain, who led the research team at MSU, says the unlocking demonstrates “a weakness” in smartphones’ fingerprint authentication systems, and that he hoped it would “motivate phone developers to create advanced security measures for fingerprint liveness detection.” He added:

This shows that we need to understand what types of attacks are possible on fingerprint sensors, and biometrics in general, and how to fix them. If we don’t, the public will have less confidence in using biometrics. After all, biometric authentication was introduced in consumer devices to improve security.

According to MSU, this is the first time law enforcement has used such technology as part of an ongoing investigation. A spokesperson said the lead detective “even contacted the company that was asked to help with [unlocking] the San Bernardino shooter’s phone and he kept getting the same answer: can’t do it, the tech doesn’t exist. Well, the tech exists now!”

In a statement, Samsung said:

We are aware of the research from Michigan State University, but would like to remind users that it takes special equipment, supplies and conditions to simulate a person’s fingerprint, including actual possession of the fingerprint owner’s phone, to unlock the device. If there is a potential vulnerability or a new method that challenges our efforts to ensure security at any time, we will respond to issues as quickly as possible to investigate and resolve the issue

Cracking crime just got a lot more innovative. Police and biometrics researchers at Michigan State University have successfully unlocked the smartphone of a murder victim by using a digitally enhanced print-out of his fingerprint. Officers from the digital forensics and cyber-crime unit at MSU’s police department approached the college’s biometrics research lab last month, having become […]

via Police cloned a Michigan murder victim’s fingerprint that unlocked his phone — Quartz