Essentials Of Educational Protocols – Do You Really Need Them?

ISO 13485
ISO 13485 Medical devices — Quality management systems — Requirements for regulatory purposes is an International Organization for Standardization standard published for the first time in 1996; it represents the requirements for a comprehensive quality management system for the design and manufacture of medical devices.

This standard supersedes earlier documents such as EN 46001 and EN 46002, the previously published ISO 13485, and ISO 13488.

The essentials of validation planning, protocol writing, and change management will be explained.

via ESSENTIALS OF VALIDATION – Do You Really Need It? — Compliance4all

Advertisements

RELATIVE POVERTY not Poverty causes crime.

Psychology Professor Jordan Peterson explains the clear documented science why it’s relative poverty and not poverty itself that causes crime, AKA the Gini Coefficient He goes on further explaining the role of the male dominance hierarchy in context of relative poverty and crime.

Dr. Peterson’s new book is available for pre-order:
12 Rules for Life: An Antidote to Chaos: http://amzn.to/2yvJf9L
If you want to support Dr. Peterson, here is his Patreon:
https://www.patreon.com/jordanbpeterson
Check out Jordan Peterson’s Self Authoring Program, a powerful tool to sort yourself out:
http://bit.ly/selfAuth (Official affiliate link for Bite-sized Philosophy)

 

How to Evaluate a Statistic and avoid Bias / False Presumptions via Mathematical Software

A counting statistic is simply a numerical count of the number of some item such as “one million missing children”, “three million homeless”, and “3.5 million STEM jobs by 2025.” Counting statistics are frequently deployed in public policy debates, the marketing of goods and services, and other contexts. Particularly when paired with an emotionally engaging story, counting statistics can be powerful and persuasive. Counting statistics can be highly misleading or even completely false. This article discusses how to evaluate counting statistics and includes a detailed list of steps to follow to evaluate a counting statistic.

Checklist for Counting Statistics

  1. Find the original primary source of the statistic. Ideally you should determine the organization or individual who produced the statistic. If the source is an organization you should find out who specifically produced the statistic within the organization. If possible find out the name and role of each member involved in the production of the statistic. Ideally you should have a full citation to the original source that could be used in a high quality scholarly peer-reviewed publication.
  2. What is the background, agenda, and possible biases of the individual or organization that produced the statistic? What are their sources of funding?What is their track record, both in general and in the specific field of the statistic? Many statistics are produced by “think tanks” with various ideological and financial biases and commitments.
  3. How is the item being counted defined. This is very important. Many questionable statistics use a broad, often vague definition of the item paired with personal stories of an extreme or shocking nature to persuade. For example, the widely quoted “one million missing children” in the United States used in the 1980’s — and even today — rounded up from an official FBI number of about seven hundred thousand missing children, the vast majority of whom returned home safely within a short time, paired with rare cases of horrific stranger abductions and murders such as the 1981 murder of six year old Adam Walsh.
  4. If the statistic is paired with specific examples or personal stories, how representative are these examples and stories of the aggregate data used in the statistic? As with the missing children statistics in the 1980’s it is common for broad definitions giving large numbers to be paired with rare, extreme examples.
  5. How was the statistic measured and/or computed? At one extreme, some statistics are wild guesses by interested parties. In the early stages of the recognition of a social problem, there may be no solid reliable measurements; activists are prone to providing an educated guess. The statistic may be the product of an opinion survey. Some statistics are based on detailed, high quality measurements.
  6. What is the appropriate scale to evaluate the counting statistic? For example, the United States Census estimates the total population of the United States as of July 1, 2018 at 328 million. The US Bureau of Labor Statistics estimates about 156 million people are employed full time in May 2019. Thus “3.5 million STEM jobs” represents slightly more than one percent of the United States population and slightly more than two percent of full time employees.
  7. Are there independent estimates of the same or a reasonably similar statistic? If yes, what are they? Are the independent estimates consistent? If not, why not? If there are no independent estimates, why not? Why is there only one source? For example, estimates of unemployment based on the Bureau of Labor Statistics Current Population Survey (the source of the headline unemployment number reported in the news) and the Bureau’s payroll survey have a history of inconsistency.
  8. Is the statistic consistent with other data and statistics that are expected to be related? If not, why doesn’t the expected relationship hold? For example, we expect low unemployment to be associated with rising wages. This is not always the case, raising questions about the reliability of the official unemployment rate from the Current Population Survey.
  9. Is the statistic consistent with your personal experience or that of your social circle?If not, why not? For example, I have seen high unemployment rates among my social circle at times when the official unemployment rate was quite low.
  10. Does the statistic feel right? Sometimes, even though the statistic survives detailed scrutiny — following the above steps — it still doesn’t seem right. There is considerable controversy over the reliability of intuition and “feelings.” Nonetheless, many people believe a strong intuition often proves more accurate than a contradictory “rational analysis.” Often if you meditate on an intuition or feeling, more concrete reasons for the intuition will surface.

(C) 2019 by John F. McGowan, Ph.D.

About Me

John F. McGowan, Ph.D. solves problems using mathematics and mathematical software, including developing gesture recognition for touch devices, video compression and speech recognition technologies. He has extensive experience developing software in C, C++, MATLAB, Python, Visual Basic and many other programming languages. He has been a Visiting Scholar at HP Labs developing computer vision algorithms and software for mobile devices. He has worked as a contractor at NASA Ames Research Centerinvolved in the research and development of image and video processing algorithms and technology. He has published articles on the origin and evolution of life, the exploration of Mars (anticipating the discovery of methane on Mars), and cheap access to space. He has a Ph.D. in physics from the University of Illinois at Urbana-Champaign and a B.S. in physics from the California Institute of Technology (Caltech).

 

 

A counting statistic is simply a numerical count of the number of some item such as “one million missing children”, “three million homeless”, and “3.5 million STEM jobs by 2025.” Counting statistics are frequently deployed in public policy debates, the marketing of goods and services, and other contexts. Particularly when paired with an emotionally engaging […]

via How to Evaluate a Counting Statistic — Mathematical Software

Factors Affecting The Intensity Of Poisoning via Forensic’s blog

By @forensicfield

Introduction

The resultant of poisoning depends on many factors.

There are number of reasons which can affect intensity of poisoning are further explained, such as;

  • Dose.
  • Time of intake
  • Way of taking
  • Environmental factors, etc.

Dose

Amount of the poison is determine the affect of it on the body. Smaller the dose, lighter the effect and larger the dose, severe the effect.

Resistance

After doing continuous use of some drugs, such as opiates, tobacco, alcohol, etc. person develop a resistance towards some drugs.

Incompatible Combination of Drugs

Ingestion of some incompatible combination of Medicines may be fatal. Such As; Prozac and Tramadol, Thyroid medication and proton pump inhibitors, Nonsteroidal anti-inflammatory drugs and antihypertensive, etc.

Hypersensitivity

Some of persons show abnormal response (idiosyncrasy) to a drug like morphine, quinine, aspirin etc. due to inherent personal hypersensitivity.

Allergy

Some persons are allergic (acquired hypersensitivity) towards certain drugs like penicillin, sulpha, etc.

Incompatible Combinations

Ingestion of certain medications like anti – ulcerous gels with aspirin may lead to fatal effects.

Tolerance

People develop a marked tolerance in the case of opium, alcohol, strychnine, tobacco, arsenic and some other narcotic drugs by repeated and continued use.

Synergism

Some poisonous drugs can be toxic when taken together may cause lethal effect. Such as; Alcohol and Benzodiazepines, Heroine and Cocaine, Benzodiazepines and Opioids, Alcohol and Opioids

Slow Poisons

The continuous small amount of poison ingestion like arsenic, strychnine, lead, etc. accumulate in body and may cause death.

Conditions of The Body

  • Conditions of the body, i.e. age, health, etc. also affect the action of the poison.
  • Generally old persons, weaker persons and children severly affected by low dose of poison then young and healthy person.

Cumulative Action

The repeated small doses of cumulative poisons like arsenic, lead, mercury, strychnine, digitalis etc. may cause death or chronic poisoning by cumulative action.

Shock

Some times, a large dose of a poison acts differently from a small dose, for example; a large dose of arsenic may cause death by shock while a small dose results in diarrhoea.

Forms of Poison

  • Gases/Vapours Poisons
  • Liquid Poisons
  • Powder Poisons
  • Chemical Combination
  • Mechanical Combination

Gases / Vapours Poisons

These types of poison absorbed immediately and act quickly.

Liquid Poisons

These act better than solids.

Powder Poisons

Fine powdered poison act fast than coarse powdered poison.

Chemical Combination

Some substances in combination act like lethal, such as; acids and alkali’s, strychnine and tannic acid, etc.

Mechanical Combination

The action of a poison is altered when combined mechanically with inert substances, such as; when alkaloid when taken with charcoal, it does not act.

Methods Of Administration

A poison acts more rapidly when inhaled in gaseous form or when injected intravenously.

Next when inject intramuscularly or subcutaneously.

A poison acts slowly when swallowed or applied on skin.

Watch it🤳, share it ✌and subscribe it 👇 : –

NO COMMENTS – add the first!

JZ Logistics via AP Editor


SEND

By @forensicfield Introduction The resultant of poisoning depends on many factors. There are number of reasons which can affect intensity of poisoning are further explained, such as; Dose. Time of intake Way of taking Environmental factors, etc. Dose Amount of the poison is determine the affect of it on the body. Smaller the dose, lighter […]

via Factors Affecting The Intensity Of Poisoning — Forensic’s blog

Biometrics — Forensic’s blog

INTRODUCTION

✴ The term “biometrics” is derived from the Greek words “bio” (life) and “metrics” (to measure).
✴ Biometrics is the technical term for body measurements and calculations.
✴ Biometrics is the measurement and statistical analysis of people’s unique physical and behavioral characteristics.
✴ Biometrics allows a person to be identified and authenticated based on a set of recognizable and verifiable data, which are unique and specific to them.
✴ Biometrics authentication is the process of comparing data for the person’s characteristics in order to determine resemblance.

CHARACTERISTCS

1. UNIVERSAL
2. UNIQUE
3. INVARIABLE
4. RECORDABLE
5. MEASURABLE

HISTORY OF BIOMETRICS

🔘1858 – First systematic capture of hand images for identification purposes is recorded.
🔘1870 – Bertillon develops anthropometries to identify individuals.
🔘1892 – Galton develops a classification system for fingerprints.
🔘1896 – Henry develops a fingerprint classification system
🔘1903 – NY State Prisons begin using fingerprints.
🔘1960s – Face recognition becomes semi-automated.
🔘1960 – First model of acoustic speech production is created.
🔘1963 – Hughes research paper on fingerprint automation is published.
🔘1974- First commercial hand geometry systems become available.
🔘1976 – First prototype system for speaker recognition is developed.
🔘1986 – Exchange of fingerprint minutiae data standard is published.
🔘1988 – First semi-automated facial recognition system is deployed.
🔘1991 – Face detection is pioneered, making real time face recognition possible.
🔘1992 – Biometric Consortium is established within US Government.
🔘1994 – Palm System is benchmarked.
🔘1996 – Hand geometry is implemented at the Olympic Games.
🔘1996 – NIST begins hosting annual speaker recognition evaluations.
🔘1997 – First commercial, generic biometric interoperability standard is published.
🔘1998- FBI launches COOlS (DNA forensic database).
🔘1999 – FBI’s IAFIS major components become operational.
🔘2001 – Face recognition is used at the Super Bowl in Tampa, Florida.
🔘2002 – ISO/IEC standards committee on biometrics is established.
🔘2004 – First statewide automated palm print databases are deployed in the US.
🔘2008 – U.S. Government begin coordinating biometric database use.
🔘2010 – U.S. national security apparatus utilizes biometrics for terrorist identification.
🔘2011 – Biometric identification used to identify body of Osama bin Laden.

TYPES OF BIOMETRICS

Biometrics Can Be Divided Into Three Main Categories Of Characteristics:
1. BIOLOGICAL
2. MORPHOLOGICAL
3. BEHAVIORAL

⏩DNA MATCHING

The identification of an individual using the analysis of segments from DNA.

👂EAR

The identification of an individual using the shape of the ear.

👀EYES – IRIS RECOGNITION & RETINA RECOGNITION

👁IRIS RECOGNITION- The use of the features found in the iris to identify an individual.
👁RETINA RECOGNITION- The use of patterns of veins in the back of the eye to accomplish recognition.

👱‍♂️FACE RECOGNITION

The analysis of facial features or patterns for the authentication or recognition of an individuals identity.

🤘FINGERPRINT RECOGNITION

The use of the ridges and valleys (minutiae) found on the surface tips of a human finger to identify an individual.

👋FINGER GEOMETRY RECOGNITION

The use of 3D geometry of the finger to determine identity.

🤚HAND GEOMETRY RECOGNITION

The use of the geometric features of the hand such as the lengths of fingers and the width of the hand to identify an individual.

🙌VEIN RECOGNITION

Vein recognition is a type of biometrics that can be used to identify individuals based on the vein patterns in the human finger or palm.

👃ODOUR

The use of an individuals odour to determine identity.

✍SIGNATURE RECOGNITION

The authentication of an individual by the analysis of handwriting style, specifically the signature. Technology is available to check two scanned signatures using advances algorithms.

👩‍💻TYPING RECOGNITION

The use of the unique characteristics of a persons typing for establishing identity.

🗣VOICE / SPEAKER RECOGNITION

There are two major applications of speaker recognition:
🙊Voice – Speaker Verification / Authentication
🙊Voice – Speaker Identification
✔In forensic applications, it is common to first perform a speaker identification process to create a list of “best matches” and then perform a series of verification processes to determine a conclusive match.
✔Voice recognition analyzes audio input for specific patterns in speech or sound. Each voice, or common noise, has a recognizable wavelength pattern that can aid in identification of a specific individual.

🚶‍♀️👣GAIT

The use of an individuals walking style or gait to determine identity.

Biometrics allows a person to be identified and authenticated based on a set of recognizable and verifiable data, which are unique and specific to them. This video covers following Points of Biometrics: 💡Introduction 💡Characteristics 💡History & 💡Types.

via Biometrics — Forensic’s blog

Intro to Fingerprints via Forensic’s blog

Fingerprints- An Introduction

By @forensicfield

INTRODUCTION

Everything we touched, leave behind our unique impression on it, which is Our fingerprints.

No two people have exactly the same fingerprints. Even identical twins, with identical DNA, have different fingerprints.

Fingerprint identification also known as “Dactyloscopy”.

Fingerprints are the tiny ridges, whorls and valley patterns on the tip of each fingers. They develop from pressure on a baby’s tiny, developing fingers in the womb.

CLASSIFICATION OF FINGERPRINTS

🧤By FRANCIS GALTON
A well-known British scientist sir Francis Galton published his first book on fingerprint in 1892. His important work include method for classification for fingerprint which are divided into three groups-
a. Arch
b. Loop
c. Whorl

🧤 By WILLIAM J. HERSHEL
While working for the East India Company in Bengal, India, Sir William James Herschel first used fingerprints on native contracts. After a decade, he had accumulated a file of fingerprints.

🧤 By EDWARD HENRY
Henry Classification of Fingerprinting was accepted as common practice throughout England and its territorial holdings and in the United States.
Under the henry system, fingerprints divided into two classes:
•Those which are given numerical value. (whorls and composites).
•Those which doesn’t give numerical value. (loops and arches).

🖐 All patters are divided as follows:

The henry classification system assigns each finger A number according to the order in which it is located in the hand, beginning with the right thumb as number 1 and ending with the left pinky as number 10.
• The system also assigns a numerical value to fingers that contain a whorl pattern; fingers 1 and 2 each have a value of 16,
• Fingers 3 and 4 = 8,
• Fingers 5 and 6 = 4,
• Fingers 7 and 8 = 2,
• Final two fingers = 1.
• Fingers with a non-whorl pattern, such as an arch or loop pattern, have a value of zero.
• The sum of the even finger value is then calculated and placed in the numerator of a fraction.
• The sum of the odd finger values is place in the denominator.
• The value of 1 is added to each sum of the whorls with the maximum obtainable on either side of the fraction begin 32.
• Thus, the primary classification is a fraction between 1/1 to 32/32, where 1/1 would indicate no whorl patterns and 32/32 would mean that all fingers had whorl patterns.

🧤 By JUAN VUCETICH
Vucetich is credited with the first positive criminal identification as, in 1892, he was able to extract a set of prints off a door and thus identify a woman as the culprit in a double homicide.

✴ CHARACTERISTICS OF FINGERPRINT

🖐 Class Characteristics
Class characteristics are the characteristics that narrow the print down to a group but not an individual.

The Three Fingerprint Class Types Are;
1. Arches:
✔Arches are the simplest type of fingerprints that are formed by ridges that enter on one side of the print and exit on the other. No deltas are present.
✔About 5 % of the world’s populations have arch patterns.

Arch pattern

2. Loops:
✔Loops must have one delta and one or more ridges that enter and leave on the same side. These patterns are named for their positions related to the radius and ulna bones.
✔About 60-65 % of the world’s populations have loop patterns.

Loop pattern

3. Whorls:
✔Whorls have at least one ridge that makes (or tends to make) a complete circuit. They also have at least two deltas.
✔About 30-35 % of the world’s populations have whorls patterns.

Whorl Pattern

👍 Individual characteristics:
👉Individual characteristics are those characteristics that are unique to an individual.
👉They are tiny irregularities that appear within the friction ridges and are referred to as Galton’s details.

Individual Characteristics of Fingerprint

Watch it🤳, share it ✌and subscribe it 👇 : –

Fingerprints-An Introduction

By @forensicfield INTRODUCTION Everything we touched, leave behind our unique impression on it, which is Our fingerprints. No two people have exactly the same fingerprints. Even identical twins, with identical DNA, have different fingerprints. Fingerprint identification also known as “Dactyloscopy”. Fingerprints are the tiny ridges, whorls and valley patterns on the tip of each fingers. […]

via Fingerprints- An Introduction — Forensic’s blog